產(chǎn)品展廳
Vespel ASB-0664 PI DuPont 杜邦
- 品牌:DuPont 杜邦
- 價(jià)格: ¥13.7/千克
- 發(fā)布日期: 2024-08-09
- 更新日期: 2024-11-23
產(chǎn)品詳請
品牌 | DuPont 杜邦 |
貨號(hào) | |
用途 | Vespel? ASB 組件包括將復(fù)合材料或碳石墨緊固/粘合到支撐金屬結(jié)構(gòu)上,或?qū)⒁环N材料與另一種材料(如熱塑性塑料)包覆成型/嵌件成型。 這種集成能力為幫助解決挑戰(zhàn)提供了更多的可能性。 |
牌號(hào) | Vespel ASB-0664 |
型號(hào) | Vespel ASB-0664 |
品名 | 聚酰亞胺類 |
包裝規(guī)格 | 板、棒、管、方塊、長條、圓盤、環(huán)、圓球和定制機(jī)加工制件 |
外形尺寸 | 板、棒、管、方塊、長條、圓盤、環(huán)、圓球和定制機(jī)加工制件 |
生產(chǎn)企業(yè) | DuPont 杜邦 |
是否進(jìn)口 |
Vespel 是杜邦公司生產(chǎn)的一系列耐用高性能聚酰亞胺基塑料的商標(biāo)。
類型
對于不同的應(yīng)用,特殊配方被混合/復(fù)合。形狀由三個(gè)標(biāo)準(zhǔn)過程生成:
壓縮成型(用于板材和環(huán));
等靜壓成型(棒材用);和
直接成型(用于大批量生產(chǎn)的小尺寸零件)。
與從壓縮成型或等靜壓形狀加工而成的零件相比,直接成型零件的性能特征較低。等靜壓形狀具有各向同性的物理性質(zhì),而直接成型和壓縮成型的形狀表現(xiàn)出各向異性的物理性質(zhì)。
標(biāo)準(zhǔn)聚酰亞胺化合物的一些例子是:
SP-1原生聚酰亞胺提供從低溫到 300 °C (570 °F) 的工作溫度、高等離子體電阻以及 UL 等級(jí),可實(shí)現(xiàn)最小的導(dǎo)電性和導(dǎo)熱性。這是未填充的基質(zhì)聚酰亞胺樹脂。它還提供高物理強(qiáng)度和 伸長率,以及 的電氣和熱絕緣值。示例:Vespel SP-1。15%石墨(按重量計(jì)),SP-21添加到基礎(chǔ)樹脂中,可提高耐磨性并減少摩擦,適用于滑動(dòng)軸承、止推墊圈、密封環(huán)、滑塊和其他磨損應(yīng)用。這種化合物具有石墨填充等級(jí)中 的機(jī)械性能,但低于原始等級(jí)。示例:Vespel SP-21。40%石墨(按重量計(jì)),SP-22增強(qiáng)耐磨性、降低摩擦、提高尺寸穩(wěn)定性(低熱膨脹系數(shù))和抗氧化穩(wěn)定性。示例:Vespel SP-22。10%聚四氟乙烯和15%石墨(按重量計(jì)),SP-211添加到基礎(chǔ)樹脂中,可在各種操作條件下實(shí)現(xiàn) 的摩擦系數(shù)。它還具有出色的耐磨性, 可達(dá) 149 °C (300 °F)。典型應(yīng)用包括滑動(dòng)軸承或直線軸承,以及上面列出的許多磨損和摩擦用途。示例:Vespel SP-211。15%填充鉬(二硫化鉬固體潤滑劑),SP-3在真空和其他無濕環(huán)境中,石墨實(shí)際上會(huì)變得具有磨蝕性,具有耐磨性和耐摩擦性。典型應(yīng)用包括密封件、滑動(dòng)軸承、齒輪和外太空中的其他磨損表面、超高真空或干燥氣體應(yīng)用。示例:Vespel SP-3。
材料屬性數(shù)據(jù)
Vespel的材料特性(通過等靜壓成型和機(jī)械加工生產(chǎn))
財(cái)產(chǎn) 單位 測試
條件 SP-1
(未填充) SP-21
(15%石墨) SP-22
(40%石墨) SP-211
(10%聚四氟乙烯,
15%石墨) SP-3
(15%鉬
2)
比重 無量 綱 1.43 1.51 1.65 1.55 1.60
熱膨脹
系數(shù) 10?6/K 211–296 千米 45 34 27 [9]
296–573 千米 54 49 38 54 52
導(dǎo)熱 W/mK 在 313 K 0.35 0.87 1.73 0.76 0.47
體積電阻率 Ω·米 在 296 K 1014-10 15 1012-10 13
介電常數(shù) 無量 綱 在 100 Hz 時(shí) 3.62 13.53
在 10 kHz 時(shí) 3.64 13.28
在 1 MHz 時(shí) 3.55 13.41
Vespel is the trademark of a range of durable high-performance polyimide-based plastics made by DuPont.[1][2]
Characteristics and applications
[edit]
Vespel is mostly used in aerospace, semiconductor, and transportation technology. It combines heat resistance, lubricity, dimensional stability, chemical resistance, and creep resistance, and can be used in hostile and extreme environmental conditions.
Unlike most plastics,[3] it does not produce significant outgassing even at high temperatures, which makes it useful for lightweight heat shields and crucible support. It also performs well in vacuum applications,[4] down to extremely low cryogenic temperatures. However, Vespel tends to absorb a small amount of water, resulting in longer pump time while placed in a vacuum.
Although there are polymers surpassing polyimide in each of these properties, the combination of them is the main advantage of Vespel.
Thermophysical properties
[edit]
Vespel is commonly used as a thermal conductivity reference material for testing thermal insulators, because of high reproducibility and consistency of its thermophysical properties. For example, it can withstand repeated heating up to 300 °C without altering its thermal and mechanical properties.[citation needed] Extensive tables of measured thermal diffusivity, specific heat capacity, and derived density, all as functions of temperature, have been published.[citation needed]
Magnetic properties
[edit]
Vespel is used in high-resolution probes for NMR spectroscopy because its volume magnetic susceptibility (?9.02 ± 0.25×10?6 for Vespel SP-1 at 21.8 °C[5]) is close to that of water at room temperature (?9.03×10?6 at 20 °C [6]) Negative values indicate that both substances are diamagnetic. Matching volume magnetic susceptibilities of materials surrounding NMR sample to that of the solvent can reduce susceptibility broadening of magnetic resonance lines.
Processing for manufacturing applications
[edit]
Vespel can be processed by direct forming (DF) and isostatic molding (basic shapes – plates, rods and tubes). For prototype quantities, basic shapes are typically used for cost efficiency since tooling is quite expensive for DF parts. For large scale CNC production, DF parts are often used to reduce per part costs, at the expense of material properties which are inferior to those of isostatically produced basic shapes.[7]
Types
[edit]
For different applications, special formulations are blended/compounded. Shapes are produced by three standard processes:
compression molding (for plates and rings);
isostatic molding (for rods); and
direct forming (for small size parts produced in large volumes).
Direct-formed parts have lower performance characteristics than parts that have been machined from compression-molded or isostatic shapes. Isostatic shapes have isotropic physical properties, whereas direct formed and compression molded shapes exhibit anisotropic physical properties.
Some examples of standard polyimide compounds are:
SP-1 virgin polyimideprovides operating temperatures from cryogenic to 300 °C (570 °F), high plasma resistance, as well as a UL rating for minimal electrical and thermal conductivity. This is the unfilled base polyimide resin. It also provides high physical strength and maximal elongation, and the best electrical and thermal insulation values. Example: Vespel SP-1.15% graphite by weight, SP-21added to the base resin for increased wear resistance and reduced friction in applications such as plain bearings, thrust washers, seal rings, slide blocks and other wear applications. This compound has the best mechanical properties of the graphite-filled grades, but lower than the virgin grade. Example: Vespel SP-21.40% graphite by weight, SP-22for enhanced wear resistance, lower friction, improved dimensional stability (low coefficient of thermal expansion), and stability against oxidation. Example: Vespel SP-22.10% PTFE and 15% graphite by weight, SP-211added to the base resin for the lowest coefficient of friction over a wide range of operating conditions. It also has excellent wear resistance up to 149 °C (300 °F). Typical applications include sliding or linear bearings as well as many wear and friction uses listed above. Example: Vespel SP-211.15% moly-filled (molybdenum disulfide solid lubricant), SP-3for wear and friction resistance in vacuum and other moisture-free environments where graphite actually becomes abrasive. Typical applications include seals, plain bearings, gears, and other wear surfaces in outer space, ultra-high vacuum or dry gas applications. Example: Vespel SP-3.
Material properties data
[edit]
Material properties of Vespel[8] (produced by isostatic molding and machining)
Property Units Test
condition SP-1
(unfilled) SP-21
(15% graphite) SP-22
(40% graphite) SP-211
(10% PTFE,
15% graphite) SP-3
(15% MoS
2)
Specific gravity dimensionless 1.43 1.51 1.65 1.55 1.60
Thermal expansion
coefficient 10?6/K 211–296 K 45 34 27 [9]
296–573 K 54 49 38 54 52
Thermal conductivity W/mK at 313 K 0.35 0.87 1.73 0.76 0.47
Volume resistivity Ω·m at 296 K 1014–1015 1012–1013
Dielectric constant dimensionless at 100 Hz 3.62 13.53
at 10 kHz 3.64 13.28
at 1 MHz 3.55 13.49
性能優(yōu)勢
飛機(jī)發(fā)動(dòng)機(jī)外件
杜邦™ Vespel® 可以幫助解決飛機(jī)發(fā)動(dòng)機(jī)外部部件的嚴(yán)苛密封、磨損、摩擦、振動(dòng)和耐熱性挑戰(zhàn)。
Vespel® 飛機(jī)發(fā)動(dòng)機(jī)風(fēng)扇葉片材料
杜邦™ Vespel® 為飛機(jī)風(fēng)扇葉片耐磨條和葉片墊片提供經(jīng)過驗(yàn)證的強(qiáng)度、耐磨性和低摩擦。
發(fā)動(dòng)機(jī)部件
杜邦™ Vespel® 零件在高溫下具有持久的性能,摩擦和磨損小,是襯套、墊圈和密封圈的理想選擇。
渦輪增壓器
杜邦™ Vespel® 部件有助于減少排放,同時(shí)具有耐熱性和隔熱性,是渦輪增壓器和 EGR 系統(tǒng)的理想選擇。
半導(dǎo)體制造后端
尺寸穩(wěn)定的杜邦™ Vespel® 部件是晶圓處理和芯片測試的理想選擇 - 它們磨損低,不會(huì)損壞金屬或陶瓷等晶圓。
飛機(jī)發(fā)動(dòng)機(jī)短艙設(shè)計(jì)
杜邦™ Vespel® 具有久經(jīng)考驗(yàn)的剪切強(qiáng)度、抗沖擊性和減輕重量,可提高飛機(jī)發(fā)動(dòng)機(jī)短艙的性能。
Vespel® 發(fā)動(dòng)機(jī)機(jī)油系統(tǒng)密封件
杜邦™ Kalrez® O 形圈、墊圈和定制密封件可承受噴氣燃料、發(fā)動(dòng)機(jī)潤滑油、液壓油、火箭推進(jìn)劑和氧化劑的侵蝕。
動(dòng)力運(yùn)動(dòng)車輛
杜邦™ Vespel® 離合器組件具有韌性、高摩擦下的低磨損和抗沖擊性,使其成為全地形車、摩托車等的理想選擇。
飛機(jī)發(fā)動(dòng)機(jī)短艙設(shè)計(jì)
杜邦™ Vespel® 具有久經(jīng)考驗(yàn)的剪切強(qiáng)度、抗沖擊性、輕量化和高耐熱性,可提高飛機(jī)發(fā)動(dòng)機(jī)短艙性能。
傳動(dòng)系統(tǒng)組件
類型
對于不同的應(yīng)用,特殊配方被混合/復(fù)合。形狀由三個(gè)標(biāo)準(zhǔn)過程生成:
壓縮成型(用于板材和環(huán));
等靜壓成型(棒材用);和
直接成型(用于大批量生產(chǎn)的小尺寸零件)。
與從壓縮成型或等靜壓形狀加工而成的零件相比,直接成型零件的性能特征較低。等靜壓形狀具有各向同性的物理性質(zhì),而直接成型和壓縮成型的形狀表現(xiàn)出各向異性的物理性質(zhì)。
標(biāo)準(zhǔn)聚酰亞胺化合物的一些例子是:
SP-1原生聚酰亞胺提供從低溫到 300 °C (570 °F) 的工作溫度、高等離子體電阻以及 UL 等級(jí),可實(shí)現(xiàn)最小的導(dǎo)電性和導(dǎo)熱性。這是未填充的基質(zhì)聚酰亞胺樹脂。它還提供高物理強(qiáng)度和 伸長率,以及 的電氣和熱絕緣值。示例:Vespel SP-1。15%石墨(按重量計(jì)),SP-21添加到基礎(chǔ)樹脂中,可提高耐磨性并減少摩擦,適用于滑動(dòng)軸承、止推墊圈、密封環(huán)、滑塊和其他磨損應(yīng)用。這種化合物具有石墨填充等級(jí)中 的機(jī)械性能,但低于原始等級(jí)。示例:Vespel SP-21。40%石墨(按重量計(jì)),SP-22增強(qiáng)耐磨性、降低摩擦、提高尺寸穩(wěn)定性(低熱膨脹系數(shù))和抗氧化穩(wěn)定性。示例:Vespel SP-22。10%聚四氟乙烯和15%石墨(按重量計(jì)),SP-211添加到基礎(chǔ)樹脂中,可在各種操作條件下實(shí)現(xiàn) 的摩擦系數(shù)。它還具有出色的耐磨性, 可達(dá) 149 °C (300 °F)。典型應(yīng)用包括滑動(dòng)軸承或直線軸承,以及上面列出的許多磨損和摩擦用途。示例:Vespel SP-211。15%填充鉬(二硫化鉬固體潤滑劑),SP-3在真空和其他無濕環(huán)境中,石墨實(shí)際上會(huì)變得具有磨蝕性,具有耐磨性和耐摩擦性。典型應(yīng)用包括密封件、滑動(dòng)軸承、齒輪和外太空中的其他磨損表面、超高真空或干燥氣體應(yīng)用。示例:Vespel SP-3。
材料屬性數(shù)據(jù)
Vespel的材料特性(通過等靜壓成型和機(jī)械加工生產(chǎn))
財(cái)產(chǎn) 單位 測試
條件 SP-1
(未填充) SP-21
(15%石墨) SP-22
(40%石墨) SP-211
(10%聚四氟乙烯,
15%石墨) SP-3
(15%鉬
2)
比重 無量 綱 1.43 1.51 1.65 1.55 1.60
熱膨脹
系數(shù) 10?6/K 211–296 千米 45 34 27 [9]
296–573 千米 54 49 38 54 52
導(dǎo)熱 W/mK 在 313 K 0.35 0.87 1.73 0.76 0.47
體積電阻率 Ω·米 在 296 K 1014-10 15 1012-10 13
介電常數(shù) 無量 綱 在 100 Hz 時(shí) 3.62 13.53
在 10 kHz 時(shí) 3.64 13.28
在 1 MHz 時(shí) 3.55 13.41
Vespel is the trademark of a range of durable high-performance polyimide-based plastics made by DuPont.[1][2]
Characteristics and applications
[edit]
Vespel is mostly used in aerospace, semiconductor, and transportation technology. It combines heat resistance, lubricity, dimensional stability, chemical resistance, and creep resistance, and can be used in hostile and extreme environmental conditions.
Unlike most plastics,[3] it does not produce significant outgassing even at high temperatures, which makes it useful for lightweight heat shields and crucible support. It also performs well in vacuum applications,[4] down to extremely low cryogenic temperatures. However, Vespel tends to absorb a small amount of water, resulting in longer pump time while placed in a vacuum.
Although there are polymers surpassing polyimide in each of these properties, the combination of them is the main advantage of Vespel.
Thermophysical properties
[edit]
Vespel is commonly used as a thermal conductivity reference material for testing thermal insulators, because of high reproducibility and consistency of its thermophysical properties. For example, it can withstand repeated heating up to 300 °C without altering its thermal and mechanical properties.[citation needed] Extensive tables of measured thermal diffusivity, specific heat capacity, and derived density, all as functions of temperature, have been published.[citation needed]
Magnetic properties
[edit]
Vespel is used in high-resolution probes for NMR spectroscopy because its volume magnetic susceptibility (?9.02 ± 0.25×10?6 for Vespel SP-1 at 21.8 °C[5]) is close to that of water at room temperature (?9.03×10?6 at 20 °C [6]) Negative values indicate that both substances are diamagnetic. Matching volume magnetic susceptibilities of materials surrounding NMR sample to that of the solvent can reduce susceptibility broadening of magnetic resonance lines.
Processing for manufacturing applications
[edit]
Vespel can be processed by direct forming (DF) and isostatic molding (basic shapes – plates, rods and tubes). For prototype quantities, basic shapes are typically used for cost efficiency since tooling is quite expensive for DF parts. For large scale CNC production, DF parts are often used to reduce per part costs, at the expense of material properties which are inferior to those of isostatically produced basic shapes.[7]
Types
[edit]
For different applications, special formulations are blended/compounded. Shapes are produced by three standard processes:
compression molding (for plates and rings);
isostatic molding (for rods); and
direct forming (for small size parts produced in large volumes).
Direct-formed parts have lower performance characteristics than parts that have been machined from compression-molded or isostatic shapes. Isostatic shapes have isotropic physical properties, whereas direct formed and compression molded shapes exhibit anisotropic physical properties.
Some examples of standard polyimide compounds are:
SP-1 virgin polyimideprovides operating temperatures from cryogenic to 300 °C (570 °F), high plasma resistance, as well as a UL rating for minimal electrical and thermal conductivity. This is the unfilled base polyimide resin. It also provides high physical strength and maximal elongation, and the best electrical and thermal insulation values. Example: Vespel SP-1.15% graphite by weight, SP-21added to the base resin for increased wear resistance and reduced friction in applications such as plain bearings, thrust washers, seal rings, slide blocks and other wear applications. This compound has the best mechanical properties of the graphite-filled grades, but lower than the virgin grade. Example: Vespel SP-21.40% graphite by weight, SP-22for enhanced wear resistance, lower friction, improved dimensional stability (low coefficient of thermal expansion), and stability against oxidation. Example: Vespel SP-22.10% PTFE and 15% graphite by weight, SP-211added to the base resin for the lowest coefficient of friction over a wide range of operating conditions. It also has excellent wear resistance up to 149 °C (300 °F). Typical applications include sliding or linear bearings as well as many wear and friction uses listed above. Example: Vespel SP-211.15% moly-filled (molybdenum disulfide solid lubricant), SP-3for wear and friction resistance in vacuum and other moisture-free environments where graphite actually becomes abrasive. Typical applications include seals, plain bearings, gears, and other wear surfaces in outer space, ultra-high vacuum or dry gas applications. Example: Vespel SP-3.
Material properties data
[edit]
Material properties of Vespel[8] (produced by isostatic molding and machining)
Property Units Test
condition SP-1
(unfilled) SP-21
(15% graphite) SP-22
(40% graphite) SP-211
(10% PTFE,
15% graphite) SP-3
(15% MoS
2)
Specific gravity dimensionless 1.43 1.51 1.65 1.55 1.60
Thermal expansion
coefficient 10?6/K 211–296 K 45 34 27 [9]
296–573 K 54 49 38 54 52
Thermal conductivity W/mK at 313 K 0.35 0.87 1.73 0.76 0.47
Volume resistivity Ω·m at 296 K 1014–1015 1012–1013
Dielectric constant dimensionless at 100 Hz 3.62 13.53
at 10 kHz 3.64 13.28
at 1 MHz 3.55 13.49
性能優(yōu)勢
飛機(jī)發(fā)動(dòng)機(jī)外件
杜邦™ Vespel® 可以幫助解決飛機(jī)發(fā)動(dòng)機(jī)外部部件的嚴(yán)苛密封、磨損、摩擦、振動(dòng)和耐熱性挑戰(zhàn)。
Vespel® 飛機(jī)發(fā)動(dòng)機(jī)風(fēng)扇葉片材料
杜邦™ Vespel® 為飛機(jī)風(fēng)扇葉片耐磨條和葉片墊片提供經(jīng)過驗(yàn)證的強(qiáng)度、耐磨性和低摩擦。
發(fā)動(dòng)機(jī)部件
杜邦™ Vespel® 零件在高溫下具有持久的性能,摩擦和磨損小,是襯套、墊圈和密封圈的理想選擇。
渦輪增壓器
杜邦™ Vespel® 部件有助于減少排放,同時(shí)具有耐熱性和隔熱性,是渦輪增壓器和 EGR 系統(tǒng)的理想選擇。
半導(dǎo)體制造后端
尺寸穩(wěn)定的杜邦™ Vespel® 部件是晶圓處理和芯片測試的理想選擇 - 它們磨損低,不會(huì)損壞金屬或陶瓷等晶圓。
飛機(jī)發(fā)動(dòng)機(jī)短艙設(shè)計(jì)
杜邦™ Vespel® 具有久經(jīng)考驗(yàn)的剪切強(qiáng)度、抗沖擊性和減輕重量,可提高飛機(jī)發(fā)動(dòng)機(jī)短艙的性能。
Vespel® 發(fā)動(dòng)機(jī)機(jī)油系統(tǒng)密封件
杜邦™ Kalrez® O 形圈、墊圈和定制密封件可承受噴氣燃料、發(fā)動(dòng)機(jī)潤滑油、液壓油、火箭推進(jìn)劑和氧化劑的侵蝕。
動(dòng)力運(yùn)動(dòng)車輛
杜邦™ Vespel® 離合器組件具有韌性、高摩擦下的低磨損和抗沖擊性,使其成為全地形車、摩托車等的理想選擇。
飛機(jī)發(fā)動(dòng)機(jī)短艙設(shè)計(jì)
杜邦™ Vespel® 具有久經(jīng)考驗(yàn)的剪切強(qiáng)度、抗沖擊性、輕量化和高耐熱性,可提高飛機(jī)發(fā)動(dòng)機(jī)短艙性能。
傳動(dòng)系統(tǒng)組件
高性能 Vespel® 傳動(dòng)系統(tǒng)組件有助于控制摩擦、限制磨損并降低卡死風(fēng)險(xiǎn)
低摩擦和高耐磨性
重載下的高強(qiáng)度
減振
耐熱性
緊密密封
抗蠕變性
電氣和隔熱
Vespel® 為惡劣環(huán)境中的組件提供高性能,包括:
復(fù)合管夾
管道密封件
套圈
閥門密封件
保險(xiǎn)杠、耐磨墊和耐磨條
驅(qū)動(dòng)臂軸承
鐘形曲柄襯套
自鎖緊固件
絕緣子
花鍵適配器
聯(lián)軸器
此外,Vespel® 使重量更輕的部件不僅實(shí)用,而且在許多情況下比標(biāo)準(zhǔn)金屬、陶瓷和其他工程聚合物更好。